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Abstract  

The recovery and recycling of precious metals, rare earth materials and other technology 

materials from printed circuit boards (PCB) waste is of environmental and economic interest. 

PCBs contain a high concentration of technology materials which are usually processed in 

ǘƻŘŀȅΩǎ ǊŜŎȅŎƭƛƴƎ ŎƘŀƛƴǎ ōȅ ǎƘǊŜŘŘƛƴƎ and/or smelting. A high amount of critical materials is not 

recycled because of economic, thermo-dynamic, physical and chemical reasons. A higher 

recycling rate could be achieved by material composition estimation and a selective dismantling 

ǇǊƻŎŜǎǎ ǿƘƛŎƘ ƛǎ ƴƻǘ ŦŜŀǎƛōƭŜ ǿƛǘƘ ǘƻŘŀȅΩǎ ǊŜŎȅŎƭƛƴƎ ǇǊƻŎŜŘǳǊŜǎΦ An electronic component 

identification process would support the reuse and upgrade of electronic components.  

In this thesis, a software demonstrator is developed for the automatic evaluation of 2D images 

of PCBs with their components and for determination of their material composition. A data 

fusion model for electronic component detection and classification was created. The data 

fusion model consists of algorithms for feature extraction from different feature domains with 

the goal of extracting significant features for electronic component package classification. The 

feature domains are based on package features, such as package color, package color 

segments, package form and frequency spectrum of the package images. Important features 

are selected by a package specific feature selection. The evaluation of component classification 

is based on a generated database with 2D images of package references.  

After component classification the exact electronic component name is determined by reading 

the electronic component markings. Therefore an electronic component identification based on 

OCR algorithms is developed, which determined the component names based on an electronic 

component name database.  

To analyze the content of critical materials of a PCB and its components, a life-cycle-inventory 

(LCI) model of the PCB is automatically generated based on the recognized electronic 

components with the data fusion model. The ILCD-Format (International Reference Life Cycle 

Data System) is used to store the LCI-model data and material composition data for each 

component and merge them to a PCB model which can be imported in common life-cycle 

assessment (LCA) software like GaBi or OpenLCA. 
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1. Introduction  

The problem of worldwide increase of waste electric and electronic waste (WEEE) requires an 

end-of-life management system. Lƴ ǘƻŘŀȅΩǎ ǊŜŎȅŎƭƛƴƎ ŎƘŀƛƴǎ ŀ ƭƻǘ ƻŦ ǾŀƭǳŀōƭŜ ƳŀǘŜǊƛŀƭǎ ŀƴŘ 

limited resources are not recycled and this will constitute a problem of resource scarcity for 

future generations. An Efficient recycling and reuse system for waste electric and electronic 

waste (WEEE) is required which is based on detailed information about the material content 

and the electronic composition of printed circuit boards (PCBs). This thesis improves the 

recycling chain based on an Automatic Optical Inspection system (AOI-System) for PCBs which 

provides a good opportunity for modeling the composition of PCBs. Information about amount 

and value of valuable materials in electronic components and reusable electronic components 

are collected to support an efficient recycling process.  

1.1  Problem formulation  

The production of electric and electronic equipment (EEE) is increasing worldwide. At the end 

of the life the equipment ends up as waste electric and electronic waste (WEEE). This 

development requires an end-of-life management system which serves the following goals: 

- reduction of materials going to landfill and minimization of landfill-volumes 

- recycling of materials in order to keep the maximum economic and environmental value 

and to avoid new material extraction 

- reduction of emissions of environmentally relevant substances, for example through 

leaching of landfill sites, incineration slags and off-gasses from combustion processes 

(Huisman, 2004) 

Recycling of WEEE is an important subject not only from the point of view of waste treatment 

but also regarding the recovery of valuable materials and the reuse of electronic components. 

WEEE is diverse and complex in terms of materials and components. Electronic products, in 

particular IT and communication equipment, contain a lot of precious metals (gold, silver, 

palladium) and special metals (indium, selenium, tellurium, tantalum, bismuth, antimony). The 

precious metals are mainly found in printed circuit boards (PCBs). The concentration of precious 
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metals in PCBs is usually much higher than the concentration in ores, especially for gold and 

palladium (Chancerel, et al., 2009). Moreover, the extraction of precious metals through mining 

is associated with negative environmental impacts through significant emissions of greenhouse 

gases and energy, water and land usage. Furthermore, the high economic value of precious 

metals on the world market as well as the limited available reserves of precious metals requires 

an improvement of recovering precious metals from WEEE. The proportion of PCBs in WEEE 

over different equipment types is around 9% (Chancerel, et al., 2009). In an experimental trial 

(Chancerel, et al., 2009) measured concentration in unshredded PCBs of 669 g/t of silver, 135 

g/t of gold and 50 g/t of palladium. Other metals like tantalum are very rare ǊŜŎȅŎƭŜŘ ƛƴ ǘƻŘŀȅΩǎ 

recycling chains.  

The determination of economical valuable electronic components which can be reused is not 

done in todayΩǎ recycling chains. A simplified recycling chain for WEEE is shown in Figure 1. The 

detailed recycling chain for WEEE is shown in Appendix J. 

 

Figure 1: Simplified recycling chain for WEEE 

The recycling chain consists of three steps. The first step is the collection of WEEE which is out 

of focus for the improvement of the recycling chain in this thesis. The pre-processing step 

consists of manual sorting and dismantling as well as of shredding and automated sorting. The 

improvement of the pre-processing stage is the main focus of this thesis. An improved pre-

processing also enables improved or new recovery and disposal steps. The mass balance of the 

pre-processing step is shown in Figure 2.  
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Figure 2: Mass balance of the preprocessing of 1,000 kg of input WEEE (Chancerel, et al., 2009) 

In the study of Chancerel et al. (2009), a comparison of the input concentration and the output 

concentration of precious metals showed that only about a quarter of the gold and palladium 

and about one tenth of silver were sent to output fractions from which precious metals could 

be directly recovered. Most of the precious metals went to the most mass relevant fractions. 

Per ton of input WEEE the company operating the facility did not get any revenues for around 

16.5 g gold and 5.3 g palladium. At a price of $900 per ounce of gold and $370 per ounce of 

palladium (average price for 2008 [UGS 2009]), this means that a metal value of $524 for gold 

and almost $70 for palladium per ton of treated WEEE was lost. More shredding resulted in a 

decrease of concentration of precious metals in PCBs. To reduce the losses of precious metals 

in pre-processing, in particular during shredding and subsequent sorting, the first and most 

straight-forward approach is to reduce the quantity of precious metals entering in the shredder 

(Chancerel, et al., 2009) This implies adjusting the manual sorting step at the beginning of the 

process to remove most precious metal-rich materials. This requires knowledge about the 

location of precious metals in WEEE, which is currently partially missing (Chancerel, et al., 

2009). Characterization of the waste stream is of paramount importance for developing a cost-

effective and environmentally friendly recycling system (Cui, et al., 2003). 
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1.2  Purpose 

The purpose of this paper is to improve the pre-processing step of the recycling chain by an 

improved automatic characterization of the PCB waste stream at component-level. The 

unshredded or pre-shredded PCBs are inspected by an automatic optical inspection system 

(AOI-System) based on an electronic component recognition database which contains 

information about component recognition features and component composition. This thesis is 

focused on the image processing part of the AOI system. The development of a camera setup, 

lighting system or other AOI system components is out of focus. 

Several electronic component detection algorithms are studied. A data fusion model is 

developed for electronic component classification. The fusion model consists of a feature 

extraction process which generates component package specific features. The most important 

features for each component are selected in a feature selection process and the component 

packages are classified according to its most important features. Different feature extraction, 

feature selection and classification processes and algorithms are studies to reach the best 

classification accuracy.  

LƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ǘƘŜ ŎƻƴǘŜƴǘ ƻŦ ǾŀƭǳŀōƭŜ ƳŀǘŜǊƛŀƭǎ όƎƻƭŘΣ ǎƛƭǾŜǊΣ ǇŀƭƭŀŘƛǳƳΣ Χύ  -or hazardous 

ƳŀǘŜǊƛŀƭǎ όƘŜŀǾȅ ƳŜǘŀƭǎΣ ōǊƻƳƛƴŀǘŜŘ ŦƭŀƳŜΣ Χύ from existing LCA software are used to 

automatically generate PCB composition models which contain the location and quantity of 

specific materials depending on the electronic components of the PCB. This model can help for 

automatic or manual selective disassembly of precious metal rich components or hazardous 

material rich components. 

An OCR-system is developed for reading electronic component markings and verifying the 

component names based on an online component database. Additional information about 

identified components such as original price or distributors is collected.  

Information about the economic value of reusable electronic components helps to locate 

reusable components from an economic point of view. The increase of the reuse rate decreases 

the negative environmental impacts caused by the production of new electronic components 
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and increases the revenue of recycling companies. An improved recycling chain model with the 

approach examined in this thesis is specified in chapter 6.1. 

For the experiments, a recognition dataset consisting of 15 components is created for testing 

the data fusion model and the OCR based component identification system. 
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2. Background Theories  and related works  

Numerous papers where published and research projects are performed in the field of 

electronic component recognition for PCB recycling.  

The goal of the INPIKO project (άIntegrierte Prozesskette für die Instandhaltung elektronischer 

Komponentenέ) is to create PCB circuit diagrams from PCBs for the inspection of obsolete 

electronic components which can be used for repairing or reengineering. The process chain 

contains the acquisition of 2D-images, 3D-models and CT-data which are combined and 

analyzed to form an electronic net list (IPK, Fraunhofer, 2013).  

Erik van Dop (Dop, 1999) studied a sensor fusion approach with a range image acquisition 

module, color image module, and a high-resolution image module. It shows that the fusion of 

multiple sensor data can increase the recognition rate of electronic components compared to 

individual sensors.  

The AutDem project (Automated disassembly of PWBs) was conducted for automatic 

disassembly of electronic component for reuse. The project was focusing on the automatic 

inspection of electronic components for reuse without estimating the material composition of 

electronic components (Griese, et al., 2002).  

The Institute of Imaging and Computer Vision of the RWTH Aachen University examined the 

generation of height maps with laser triangulation (Koch, et al., 2013) and segmentation of 

SMD components for automated PCB recycling (Li, et al., 2013).  Other approaches deal with 

the localization of electronic components based on color distribution of solder joints (Article, 

2011).  

The optical character recognition of electronic components where studied ƛƴ άAn Automatic 

Chip Character Checking System for Circuit Board Quality Controlέ (Luo, 2014) and an 

application for mobile package recognition based on the OCR engine Tesseract was developed 

ƛƴ άMobile IC Package Recognitionέ (Blaes, et al.). 
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The approach in this thesis is based on a data fusion model which estimates the component 

class based on specific component features from 2D-images. The features are extracted from 

different feature domains to find specific features for each electronic component package. 

2.1 Feature extraction  algorithms  

The traditional goal of feature extraction is to characterize an object so that it can be 

recognized by measurements whose values are similar for objects in the same class and very 

different for objects in different classes (Duda, et al., 2012).  This leads to the idea of seeking 

distinguishing features that are invariant to irrelevant transformations of the input data. In the 

case of image processing the invariance of features against translation, rotation and scaling is of 

particular importance. Feature invariance requirements can be skipped if the input data is 

adjusted (Duda, et al., 2012). Important techniques and algorithms used for feature extraction 

are summarized in the following chapters. 

2.1.1 Single seed region growing approach  for color images  

A region growing approach is used for the segmentation of PCB surface and component feature 

extraction based on color segments. The single seed region growing approach is a pixel based 

image segmentation method since it involves the selection of initial seed pixel. The region 

growing algorithm examines neighboring pixel of a region or the initial seed pixel and 

determines if the neighboring pixel should be added to the region (Verma, et al., 2011). The 

first step is the selection of seed point ὼȟώ. The seed point selection is depending on the 

segmentation goal and based on user criterion. The seed point selection is defined for the 

specific methods. In chapter 3.3.4 region growing is used for Segment based feature extraction 

and in chapter 3.2.2 it is used for color based PCB surface detection. The seed pixel is the first 

region from which neighboring pixel are added to grow the region iterative depending on a 

region membership criterion. In this approach the region growing segmentation is used to 

segment color images. The criterion to add adjacent pixel Ὢὼȟώ to the region pixel ὖὋ is the 

Euclidian distance ὈὍὛὝ between the color of the adjacent pixel and the mean color value of 

the region ὖὋ . AT first the image is converted from RGB color space to HSV color space 

and the gray scaled values in the three channels are linear scaled between zero and one. 
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ὈὍὛὝὈ Ὀ Ὀ  (1) 

Ὀ Ὢὼȟώȟρ ὖὋ ρ  (2) 

Ὀ Ὢὼȟώȟς ὖὋ ς  (3) 

Ὀ Ὢὼȟώȟσ ὖὋ σ  (4) 

ὖὋ ρ
ρ

ΠὖὋ
ὪὖὋὭȟρ 

(5) 

ὖὋ ς
ρ

ΠὖὋ
ὪὖὋὭȟς 

(6) 

ὖὋ σ
ρ

ΠὖὋ
ὪὖὋὭȟσ 

(7) 

Is the distance smaller than a determined threshold ὝὌὙπȢπς, the pixel is added to the 

region. If the distance exceeds the threshold, the pixel is not added to the region. If the 

distance from all neighboring pixel to the region exceeds the threshold, the region growing 

stops and the segmented region is determined as a segment of the image (Verma, et al., 2011). 

The pseudo code of the single seed region growing approach is shown in Code 1. 
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Code 1: Single seed region growing pseudo code 

2.1.2 K-means clustering  

In the color based PCB surface recognition algorithm in chapter 3.2.2, the k-means clustering 

algorithm is used to find clusters of PCB surface segments. The algorithm is an unsupervised 

procedure with the goal to find Ὧ mean vectors ‘ȟ‘ȟȣȟ‘ which represent the center of the 

k clusters (Duda, et al., 2012). The k-means clustering is an iterative method, where k is the 

number of clusters. The determination of the number of clusters is specified in detail in the 

corresponding chapter. In this approach the initial means ⱧȟⱧȟȣⱧ  where selected randomly 

from the sample space. The squared Euclidian distance ᴁ● Ⱨᴁ is computed for each 

sample and the nearest mean Ⱨ  is selected to approximate ╟ύ ●ȟ  as: 

╟ύ ●ȟ ḗ
 ρ      ὭὪ Ὥ ά
 π  έὸὬὩὶύὭίὩ

   (8) 

PSEUDOCODE: 
 
SEED: position of seed (x,y)  
RCOUNT: Counter of keep track of current region being grown  
PG Ƶ stack to store pixel to grow  
BP Ƶ stack to store boundary pixels of grown region  
REGION: matrix with same size if image I, storing the labels of growing region  
CP(j): 4 - neighbours of CP, j=1,2,3,4  
PSEUDOCODE: 
Region_Growing(HSV image I)  

THR=0.02 
 SEED=(x,y)  
 RCOUNT=1 

i=1  
j=1  
PG(i)=SEED 
While PG not empty  
 CP=PG(i)  
 i=i - 1 

For(4 - nb of CP, k=1:4)  
 If(REGION (CP(k) not labeled)  
  Calculate: DIST(SEED,CP(k))  
  If(DIST<THR)  
   REGION(CP(k))=1;  
   i=i+1  
   PG(i)=CP(k)  
  Else  
   j=j+1  
   BP(j)=CP(k)  
  End if  
 End if  
End for  

 End for  
End 
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After approximating ╟ύ ●ȟ  the means ⱧȟⱧȟȣⱧ  are recomputed by:  

Ⱨ
В ╟ύ ●ȟ ●

В ╟ύ ●ȟ
  Ȣ 

(9) 

The approximations of ╟ύ ●ȟ  and the recomputations of the means are repeated until 

the approximations do not change compared to the previous iteration step (Duda, et al., 2012). 

The pseudo code is shown in Code 2. 

 

Code 2: k-means clustering pseudo code (Duda, et al., 2012) 

 

2.1.3 Nor malized cross correlation for 2 D pattern matching  

Template matching is a technique for finding regions in an image that matches a smaller image 

template (Lewis, 1995). One approach of determining the position of a pattern in an image is 

based on the 2D normalized cross correlation. Let Ὢὼȟώ be the intensity value of an image at 

the point ὼȟώ where ὼɸ πȟȣὓ ρ, ώᶲπȟȣὓ ρ and ὓ ὼ ὓ is the size of the 

image. The pattern is represented by a given template t of size ὔ ὼ ὔ . At each position όȟὺ 

in the image Ὢ, the normalized cross correlation value  is calculated between the image Ὢ and 

the template ὸ. The template ὸ is shifted by ό steps in the ὼ direction and ὺ steps in the ώ 

direction. The normalized cross correlation value  is calculated as follows: 

όȟὺ
В Ὢὼȟώ ὪӶȟ ὸὼ όȟώ ὺ ὸӶȟ

В Ὢὼȟώ ὪӶȟ В ὸὼ όȟώ ὺ ὸӶȟȟ

 Ȣ   
(10) 

PSEUDOCODE: 
 
k_Means_Clustering(samples)  
begin initialize n, k,  ‘, ‘ȟȣȟ‘ 

do classify n samples according to nearest ‘ 
  recompute ‘  

until no change in ‘ 
   return ‘, ‘ȟȣȟ‘ 
end 
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The value ὪӶȟ  is the mean value of Ὢὼȟώ within the area of the template t shifted to όȟὺ 

which is calculated by 

ὪӶȟ 
ρ

ὔὔ
Ὢὼȟώ  Ȣ 

(11) 

The value ὸӶ is the mean value of the template t and defined as:  

ὸӶ 
ρ

ὔὔ
ὸὼȟώ Ȣ 

(12) 

The dominator is the variance of the zero mean image function Ὢὼȟώ ὪӶȟ and the shifted 

zero mean template ὸὼ όȟώ ὺ ὸӶ . With this normalization the value όȟὺ is 

independent to changes in brightness or contrast of the image. The cross correlation matrix 

όȟὺ gives a value about similarity between the template and the image region (Lewis, 1995).  

The computation of the normalized cross correlation between a color image and a color 

template is done by estimating the normalized cross correlation between the image and the 

template in all three color spaces and estimating the mean value of all three cross correlation 

matrices όȟὺȟὧȟὧɴ ρȟςȟσ. 

όȟὺ
ρ

σ
  όȟὺȟρ όȟὺȟς όȟὺȟσ  

(13) 

The larger the value όȟὺ is, the more likely the template matches the image region. 

2.1.4 Image reconstruction with PCA  

A set of m component images Ὅ, each of size r x c, is reshaped to a vector ○░ of size ὶz ὧ  ρ. 

First the mean vector ˃ and the covariance matrix C are computed for all vectors according to 

(14) and (15).  

ρ

ά
○░ 

(14) 

Ἅ Ἶἱ Ἶἱ     
(15) 
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Next, the eigenvectors and eigenvalues are computed and sorted according to decreasing 

eigenvalues. This computation can be done in several ways in which MATLAB implementation 

based on the QZ algorithm was used. The eigenvectors ▄░ with the k largest eigenvalues ‗ of 

the covariance matrix are used to construct the projection matrix P of size ὶz ὧ  Ὧ. The 

projection of an image vector ○ into the eigenspace is given by 

▬ ╟○░ Ⱨ (16) 

The reconstruction of an image projects the image into the principal components (PCs) and, 

tries to recover the original image by applying the inverse projection matrix. The projection and 

recover step is shown in (17) therein ○░ᴂ is the reconstructed image of the image ○░. 

○░ ╟╣▬ Ⱨ ╟╣╟◊ Ⱨ Ⱨ (17) 

The reconstruction error is defined by the Euclidean distance between the image ○░ and its 

reconstructed image ○░ᴂ. 

Ὠ ᴁ○░ ○░ᴂᴁ ○░ ○░ᴂ  
(18) 

Often there will be just a few large eigenvalues whose eigenvectors contain the most 

information while the rest of the dimensions generally contain noise (Duda, et al., 2012). 

2.2  Feature  selection  

Feature selection has become the focus of much research in areas of applications for datasets 

with hundreds or thousands of features (Guyon, 2003). The goal is to select a subset of features 

from a feature set which can be useful to improve the prediction performance. Many 

techniques where published to address the problem of elimination of irrelevant and redundant 

features in a feature set. Other methods deal with linear combinations of features to form a set 

of new more useful features. There are three reasons why feature selection is used in 

applications of classification: 

- improving the prediction performance 

- providing faster and more cost-effective predictors 

- providing a better understanding of processing the data 
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There are several feature selection algorithms which can be classified in the three categories 

called wrapper methods, filter methods, and embedded methods.  

Wrapper methods are based on a learning machine which is treated as a black box model to 

score subsets of variables according to their predictive power. In most wrapper algorithms the 

prediction performance of a given learning machine is used to evaluate subsets of features. 

Important wrapper strategies are the Greedy search strategies of forward selection and 

backward elimination. The forward selection starts with an empty feature-set and adds useful 

features in each step. The backward elimination starts with a set of all variables and 

progressively eliminates the most useless features. 

Filters select subsets of variables as a pre-processing step, independently of the chosen 

predictor. A distinguished filter method is the Fisher sore which is a variable selection method 

that rates all features and selects the subset of features with the highest score. The Fisher score 

feature selection method is specified in chapter 2.2.1.  

Embedded methods perform variable selection in the process of training and are usually 

specific to given learning machines. The random forest feature selection is an embedded 

method which uses the out-of-bag (OOB) error to evaluate subsets of features. The random 

forest feature selection algorithm based on the OOB error is specified in chapter 0. When the 

number of variables is very small compared to the number of features one may need to resort 

the selecting variables with filter methods to avoid over-fitting (Guyon, 2003). 

2.2.1 Fisher score  

Fisher score is a variable ranking method that rates the efficiency of discriminations for each 

feature. It can be applied in two-class problems as well as in multi-class problems (Guyon, 

2003). The score evaluates each feature by the ration of the between class variance to the 

within-class variance (Guyon, 2003). Suppose we have a set of ὲ d-dimensional 

samples ὼȟȣȟὼ, ὲ is the number of samples in the subset Ὀ  labeled   and c is the number 

of classes, than the fisher score of the Ὦ-th feature is computed in (19). 
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Ὂὼ
В ὲ ‘ ‘

„
 

(19) 

Where „ is the standard deviation and ‘ the mean of the whole data set corresponding to 

the Ὦ-th feature and ὼ is the Ὦ-th feature of the sample ●. 

„ ὲ „  
(20) 

„ ὼ

●ᶰ

‘ (21) 

‘
ρ

ὲ
ὼ

●ᶰ

 
(22) 

‘
ρ

ὲ
ὲ‘ 

(23) 

After computing the Fisher score for each feature, it selects the top-ά features as the subset of 

features. The number of features ά can be fixed or depends on a score threshold. The score of 

each feature is computed independently from all other features. Therefore the feature subset 

can be suboptimal because features with low individual scores but a very high score when they 

are combined are discarded, furthermore redundant features are not discarded (Gu, et al.). In 

this approach the Fisher score is only used in the two stage feature selection and not applied as 

individual feature selection method. 

2.2.2 Random forest feature selection  

The random forest feature selection is based on the out-of-bag (OOB) error estimation. Each 

tree is constructed by using different bootstrap samples of the data. A subset of samples is left 

out and is not used to construct the Ὧ-th tree (OOB-samples). Each sample that was left out to 

construct the tree is predicted by the Ὧ-th tree and compared to the true class of the sample. 

This is done with all trees of the random forest and the error over all trees and of all out-of-bag-

samples is summed and divided by the number of out-of-bag-samples (Breiman, 2014).  

In the random forest feature selection approach the OOB-error is estimated. The values of the 

ά-th feature of the OOB-samples are randomly permuted and the new OOB-error is estimated. 
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The number of OOB-errors which are made by the permutation of variable ά is subtracted 

from the number of OOB-errors made by the untouched OOB-samples. The average of this 

number over all trees in the forest is the raw importance score for variable ά. This raw 

importance score is divided by the standard deviation to get the z-score which is used as the 

variable importance score (Cutler, 2014). 

2.3  Object Classification  

Object recognition in image processing is the act of finding and identifying objects in an image 

or video sequence. Object classification is a special case of object recognition where the task is 

to detect objects and classify them into object categories. The task is still challenging for 

computer vision systems and many approaches have been implemented over multiple decades. 

The object recognition can be classified in three categories: approach based on CAD-like object 

models, appearance-based methods and feature-based methods. Feature based methods are 

often combined with classifiers which classify the objects based on the features according to 

their object category. There exist many classification algorithms which can be divided in 

supervised and unsupervised classification methods.  

A classifier which is used in many applications is the support vector machine (SVM) which is 

based on the idea to classify data based on the largest margin between data cluster. Another 

popular ensemble classifier which is based on decision trees classifiers is the random forest 

(Wikipedia, 2015). Both classifiers are specified in the chapter 0 and 2.3.2  

2.3.1 Random forest classifier  

Random forests are ensemble classifiers which are constructed of a multitude of decision trees. 

The algorithm was introduced by Leo Breiman and Adele Cutler and is used for classification 

and regression in many applications. 

Introduction to ensemble classifier  

In supervised learning a supervisor (teacher) provides a category label for each pattern in a 

training set which also refers to classes or labels. The classification of pattern is based on 

classification models (classifiers) which are learning the classified patterns of the training set. 

An algorithm which constructs the model is called inducer and an instance of an inducer for a 
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specific training set is called a classifier. The idea behind an ensemble classifier is to weight 

several individual weak classifiers and combine them to form a strong inducer. It is well known 

that ensemble methods can improve the prediction performance (Rokach, 2009). 

The random forest is an ensemble classifier whereby the individual classifiers are unpruned tree 

predictors. The training algorithm of random forest applies bagging (bootstrap aggregating) for 

tree learning.  

Random forest training  

Given a training set ╧ ●ȟȣȟ●▪ with response ╨ ◐ȟȣ◐▪, bagging repeatedly selects 

bootstrap samples of the training set and fits trees to the samples. For each tree in the random 

forest classifier, training subsets ╧╫ȟ╨╫ (bootstrap samples) from the training set are randomly 

selected and train the bagging trees Ὢ on ╧╫ and ╨╫. The optimal number of trees in the 

random forest depends on the size and structure of the data. In general a few hundred to 

several thousand trees are used whereat the generalization error for forests converges to a 

limit as the number of trees becomes large (Cutler, 2014). In random forests at each candidate 

split a random subset of features is selected. Typically for a dataset with p features ὴ  features 

are used in each split (Breiman, 2014). 

Random forest prediction  

The random forest prediction of a sample is done by predicting each trained tree in the random 

forest and averaging the prediction results over all trees.  The output of the random forest can 

be normalized by the number of trees and interpreted as a soft-output probability. The 

prediction output is shown in (24), in which ὄ the number of trees in the forest is and  Ὢ the 

trained tree (Breiman, 2014). 

Ὢ
ρ

ὄ
Ὢ● 

(24) 

Out-of-bag (OOB) estimation  

To train a Ὧ-th tree, a random subset of training samples ╧╫ȟ╨╫ is used to construct the tree, in 

which each tree uses different bootstrap samples. The samples that are not used to construct 
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the Ὧ-th tree are predicted by the Ὧ-th tree to get a classification. The estimation is called out-

of-bag estimation. In this way, a test set classification is obtained for each case. At the end of 

the run, take Ὦ to be the class that got most of the votes every time case ὲ was OOB. The 

proportion of times that Ὦ is not equal to the true class of ὲ averaged over all classes is the OOB 

error estimate (Breiman, 2014). 

2.3.2 Support vector machine classifier  

Support vector machine (SVM) is a learning algorithm that analyzes data and recognizes 

patterns used for classification and regression analyses. Given a set of training samples, each 

marked with one of two classification categories, an SVM model can be trained to assign new 

samples into one category or the other. In addition to performing linear classification, an SVM  

can efficiently perform a non-linear classification by using the so called kernel-trick. The kernel-

trick is a mapping of the input data to a high-dimensional feature space (Wikipedia-SVM, 2015). 

The SVM classifier constructs a hyperplane or set of hyperplanes in a high- or infinite 

dimensional space. A good separation is achieved if the hyperplane has a large distance to the 

nearest training data points of any class (functional margin), since in general the larger the 

margin the lower the generalization error of the classifier. 

Linear support vector machine  

The linear support vector machine (Linear-SVM) is the simplest case of SVMs and can be used 

to classify linear separable data by constructing a separating hyperplane. Suppose there are 

labeled training data 

●ȟώȟὭ ρȟȣȟὰȟώᶲ ρȟρȟ● ╡ɸ  (25) 

and a hyperplane which separates the positive and negative data. The point ● which lies on the 

hyperplane satisfies ◌ ● ὦ π, where ◌ is the normal of the hyperplane and ȿὦȿȾȿȿἿȿȿ is 

the perpendicular distance from the hyperplane to the origin, and ᴁ◌ᴁ is the Eucledian norm of 

◌. For the linear separable case, the goal of the algorithm is to find the separating hyperplane 

with the largest margin. This can be formulated as follows: 

● ◌ ὦ ρ Ὢέὶ ώ ρ (26) 
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● ◌ ὦ ρ Ὢέὶ ώ ρ Ȣ (27) 

These can be combined into one set of inequalities: 

ώ● ◌ ὦ ρ π ᶅὭ  Ȣ  (28) 

The points for which the equality (27) holds, the samples ●░ are placed on the hyperplane 

Ὄȡ● ◌ ὦ ρ and the point for which the equality (28) holds, the samples ●░ are placed on 

the hyperplane Ὄȡ● ◌ ὦ ρ . They are called support vectors. The distance of the 

hyperplane Ὄ  and Ὄ  from the separation hyperplane is Ὠ Ὠ ρȾᴁ◌ᴁ and the margin 

is ςȾᴁ◌ᴁ . To maximize the margin ᴁ◌ᴁ has to be minimized subject to the constraints (28). 

This problem can be reformulated by introducing Lagrange multipliers ♪ to the Lagrangian: 

ὒ
ρ

ς
ᴁ◌ᴁ ώ● ◌ ὦ  Ȣ 

(29) 

The Lagrangian ὒ has to be minimized with respect to ◌ and simultaneously requires that the 

derivatives of ὒ with respect to all the  vanish, subject to the constrains  π. Now it is a 

quadratic programming problem which can be solved by standard quadratic programming 

techniques and programs. The solution can be read in (Burges, 1998). The vector ◌ can be 

expressed as a linear combination of the training vectors: 

◌ ώ●░ Ȣ 
(30) 

The ǇǊƻōƭŜƳ Ŏŀƴ ōŜ ǊŜŦƻǊƳǳƭŀǘŜŘ ƛƴ ǘƘŜ άŘǳŀƭέ ǇǊƻōƭŜƳ ǿƘƛŎƘ ƳŀȄƛƳƛȊŜǎ ὒ subject to the 

constraint that the gradient of ὒ with respect to ◌ and ὦ vanish, and subject also to the 

constraint that the  π. Requiring that the gradient of ὒ with respect to ◌ and ╫ vanish 

give the condition: 

ώ πȟπ  ὅ Ȣ

░

 (31) 

This can be substituted in (29) to give 
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ὒ 
ρ

ς
ώώ●░ ●▒

ȟ

 Ȣ 
(32) 

(Burges, 1998)  

RBF support vector machine  

The linear-SVM algorithm can be extended by using non-linear functions as hyperplane. This is 

done with the so called kernel-trick. The dot product ●░ ●▒ is replaced by a nonlinear kernel 

function Ὧ●░ȟ●▒. The hyperplane can now separate the positive and negative samples in a 

higher feature space. A common used nonlinear kernel is the Gaussian radial basis function 

(RBF-kernel): 

Ὧ●░ȟ●▒ Ὡὼὴ♬ ●░ ●▒ ȟὪέὶ  π  
(33) 


ρ

ς„
 

(34) 

An RBF-kernel is used because of the complexity of the RBF-kernel which is lower than for 

example polynomial kernels (Hsu, et al., 2010). 

Grid search method for  parameter selection  

One of the most important steps of support vector machines (SVM) modeling is the parameter 

selection. In this approach the grid search method is used to estimate the optimal parameter 

which maximizes the classification accuracy. For the linear support vector machine only the 

regularization constant ὅ has to be determined. The regularization constant is adjusting the 

confidence interval range of the learning machine. By selecting a RBF-kernel function, the 

regularization constant ὅ and the kernel hyper-parameter  have to be determined. For the 

linear SVM the grid search method is taking ά values in ὅ to form a one dimensional grid. The 

values are used to estimate the performance of trained SVMs in a three-fold-cross-validation 

model. The optimal parameter is chosen depending on the maximum performance. 

The grid search method for the nonlinear RBF-kernel SVM is taking ά values in ὅ and ὲ values 

in  to form a ά ὼ ὲ grid (Qubo, et al.). 
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2.4  Data fusion model  

The integration of data and knowledge from several sources is known as data fusion. It is a 

combination of multiple data sources to obtain information with higher quality or more 

relevant information. In this approach a data fusion model is used for object recognition. The 

data fusion techniques can be classified in three nonexclusive categories: (i) data association, 

(ii) state estimation, (iii) decision fusion (Castanedo, 2013). Some common classification 

schemes are bŀǎŜǎ ƻƴ ǘƘŜ ǊŜƭŀǘƛƻƴ ōŜǘǿŜŜƴ ǘƘŜ Řŀǘŀ ǎƻǳǊŎŜǎΦ ¢ƘŜ 5ŀǎŀǊŀǘƘȅΩǎ /ƭŀǎǎƛŦƛŎŀǘƛƻƴ ƛǎ ŀ 

data fusion classification schema which classifies the data fusion in five categories: data in-data 

out (DAI-DAO), data in-feature out (DAI-FEO), feature in feature-out (FEI-FEO), feature in-

decision out (FEI-DEO) and decision in-decision out (DEI-DEO). The JDL data fusion classification 

is a concept proposed by the JDL and the American Department of Defense (DoD). It classifies 

the data fusion on five processing levels: Sub-Object Data Assessment, Object Assessment, 

Situation Assessment, Impact Assessment, Process Refinement (Steinberg, et al.). 

The Data fusion classification model which is manly used in image processing and used in this 

approach is based on the following abstraction levels: 

- signal level: directly addresses the signals that are acquired from the sensors 

- pixel level: operates at the image level and could be used to improve image processing 

tasks 

- characteristic:  employs features that are extracted from the images or signals 

- symbols: at this level information is represented as symbols, this level is also known as 

the decision level 

The data fusion on characteristics level (feature-level) and the data fusion on symbol level 

(decision level) are used in this approach to improve the recognition process of electronic 

components (Castanedo, 2013). A multi-sensor object recognition system for electronic 

ŎƻƳǇƻƴŜƴǘǎ ǿŀǎ ŀƭǊŜŀŘȅ ƛƴǾŜǎǘƛƎŀǘŜŘ ōȅ 9Ǌƛƪ wƻŜƭŀƴŘ Ǿŀƴ 5ƻǇ ƛƴ άaǳƭǘƛ-sensor object 

ǊŜŎƻƎƴƛǘƛƻƴΥ ¢ƘŜ ŎŀǎŜ ƻŦ ŜƭŜŎǘǊƻƴƛŎǎ ǊŜŎȅŎƭƛƴƎέ (van Dop, et al., 2001). In this work the image 

data from a range image module, a color image module and a high-resolution image module 

are combined to improve the information for object classification. In the experiments he used 
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448 modeled objects (electronic components) and reached a correctly classified rate of the 

combined sensor module of 82% (369/448) (van Dop, et al., 2001). 

Data fusion  with Dempster -Shafer theory  

Decision-level fusion consists of merging information at higher level of abstraction. The fusion 

step combines multiple algorithms to yield a final fused decision. 

The Dempster-Shafer (DS) theory of evidence, also known as theory of belief functions, is a tool 

for representing and combining evidence (Kay, 2007). The DS-theory is a generalization of the 

Bayesian reasoning but does not require probabilities for each question of interest. The 

Dempster-Shafer theory starts by assuming a universe of discourse consisting of a finite set of 

mutual exclusive atomic hypotheses Ὤ ὬȟȣȟὬ . Let ς donate the power set of all subsets 

of Ὤ. The function άȡς ᴼ πȟρ is called a basic probability assignment (masses) if it satisfies: 

άᶮ π     ὥὲὨ    άὃ ρ

Ṗ

 (35) 

 

 

The belief can not only be assigned to an atomic hypothesis, but some set ὃ ὥρȟȣȟὥ ṒὬ. 

The belief in άὃ represents our ignorance, which can be subdivided among the subsets of ὃ. 

Each element ὄ with άὄ π is called a focal element. The belief function is defined as: 

ὦὩὰὄ άὃ

Ṗ

 (36) 

It represents the minimal trust we can have in ὄ because of the supporting subset ὃ. The 

complement of belief is doubt.  

Ὠέόὦὸὄ ρ ὦὩὰὄ  (37) 

The plausibility ὴὰὃ is the sum of all masses of the subset of the set of interest. 

ὴὰὄ άὃ

᷊ ᶮ

 (38) 

The plausibility ὴὰὃ can be derived from the belief in the following way: 

ὴὰὄ ρ ὦὩὰὄ  (39) 

The complement of plausibility is disbelief.  
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ὨὭίὦὩὰὭὩὪὄ ρ ὴὰὄ  (40) 

The connection between belief, disbelief, plausibility and doubt is shown in Figure 3 (Kay, 

2007). 

 

Figure 3: Connection between belief, disbelief, plausibility and doubt (Rakowsky, 2007) 

Dempster combination rule  

The Dempster combination rule is the possibility to combine masses άȟȢȢȟά  on Ὤ with the 

orthogonal sum ά ȟȣȟ ά ṥȣṥά  which is defined as: 

ά ȟȣȟὅ ὑ ά ὃ ȣ ά ὃ

ȣ᷊᷊

 (41) 

In which 

ὑ ά ὃ ȣ ά ὃ

ȣ᷊᷊ ᶮ

 Ȣ (42) 

The factor K is measuring the conflict between άȟȣȟά .  

After performing the combination, the decision associated to the most probable element in Ὤ 

has to be quantified. The most common decision rule is the maximum of belief, where the 

element in Ὤ is quantified which corresponds to the element with the maximum belief. In 

applications for safety and reliability modeling different decision rules are used. 

2.5  Optical character recognition  of IC markings  from electronic PCB scrap  

Optical character recognition (OCR) is the conversation from images of typewritten or printed 

text into machine-encoded text. OCR is widely used in many applications for document 

digitalization, analyses of passports, bank statements, license plate character recognition or 
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other documents. One kind of object-oriented OCR is the recognition of electronic component 

markings. The PCB production increases worldwide and quality control becomes more and 

more important. Therefore many OCR engines were developed to recognize character strings 

on ICs or other electronic components. Most of the IC-marking recognition engines are 

developed for the inspection of chips and electronic components for assembly (Luo, 2014). 

Many applications use optical character verification approaches (OCV) due to the fact that the 

expected IC marking position and expected characters are well known. The quality of the string 

characters for assembly or quality control of the component production is sufficient for good 

character recognition results. 

The focus on IC marking recognition in this work lies in the recognition of electronic 

components from PCB scrap. The quality of IC markings of used electronic components from 

scrap is much worse compared to new IC components. Dirt, scratches or faded markings 

decrease the recognition rate. Unknown character positions, font or size make it more difficult 

to recognize characters. Just a few publications deal with the task of IC marking recognition 

from electronic PCB waste (Li, et al., 2014). An important measurement in OCR is the 

Levenshtein distance, which is a distance measure between sequences of characters and used 

to compare recognition results. 

2.5.1 Levenshtein distance  

The Levenshtein distance is a string metric for measuring the difference between two 

sequences (Wikipedia-Levenshtein, 2015). The distance is the number of deletions, insertions, 

or substitutions required to transform a string ίὸὶὭὲὫρ into another string  ίὸὶὭὲὫς. The 

greater the Levenshtein distance, the more different the strings are (Wikipedia-Levenshtein, 

2015). The Levenshtein distance between two strings ὥ and ὦ is given by ὰὩὺȟ ȿὥȿ ȿὦȿ in 

which 

ὰὩὺȟ ὭȟὮ

ừ
Ử
Ừ

Ử
ứÍÁØὭȟὮ                                                          ὭὪÍÉÎὭȟὮ π

άὭὲ

ὰὩὺȟ Ὥ ρȟὮ ρ

ὰὩὺȟ ὭȟὮ ρ ρ

ὰὩὺȟ Ὥ ρȟὮ ρ ρ
                   έὸὬὩὶύὭίὩ
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ρ  is the indicator function equal to 0 when ὥ ὦand equal to 1 otherwise (Wikipedia-

Levenshtein, 2015). 

2.5.2 RANSAC algorithm  

The RANSAC algorithm is an iterative method to estimate parameters of a mathematical model 

from a set of observed data which contains outliers (Wikipedia-RANSAC, 2015). The algorithm 

categorizes all Řŀǘŀ ǎŀƳǇƭŜǎ ōŜǘǿŜŜƴ άƛƴƭƛŜǊǎέ ŀƴŘ άƻǳǘƭƛŜǊǎέ thereby inliers fit the model with a 

certain error and outliers do not fit the model.  

1. The algorithm selects randomly a number of samples from the whole set to fit a model. 

The number of selected samples is the minimum number of data items which are 

necessary to estimate the model parameter.  

2. A model is fitted by the selected data samples. 

3. The model is evaluated by the data samples which were not used to fit the model. The 

algorithm checks if the data samples are consistent with the model, therefore an error 

threshold is determined. If the error between the model and a data sample is greater 

than the error threshold, the sample is classified as outlier. If the error between the 

data sample and the model is within the error threshold the data sample is classified as 

inlier.  

4. The quality of the model is estimated according to the number of outliers and inliers of 

the model. 

This procedure is repeated a fixed number of times and the most refined model parameters 

with the minimum number of outliers are selected as parameters for the mathematical model 

(Wikipedia-RANSAC, 2015). An example of a linear model selected by the RANSAC algorithm 

compared with the fitted least square error model is shown in Figure 4. 
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Figure 4: RANSAC example (http://www.codeproject.com/KB/recipes/automatic_panoramas/ransac.png) 

 

2.5.3 Octopart  database for component -name verification  

Potential component names are requested by the Octopart API (www.Octopart.com) by 

sending the composed component labels. After making a label request, the Octopart API sends 

back a list of potential component names located in its database which could correspond to the 

requested label. The distance between the potential component names and the requested label 

is determined. The distance measure is the Levenshtein distance which assigns a distance to 

two words based on their similarity. This is done with all labels of the marking and the potential 

component name with the smallest distance to the requested label is assigned as component 

name. 

Octopart is a company that offers an electronic component database with structured data for 

more than 30 million electronic components. The Octopart tools facilitate searching 

components across thousands of suppliers. An easy way to access the database is the Octopart 

API which provides information about up-to-date pricing and availability information, 

datasheets, compliance documents and technical specs for electronic components from 

distributors and manufacturers. Octopart allows access to information from more than 100 

http://www.octopart.com/
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distributors including Digi-Key, Mouser, Newark, Premier farnell, Arrow, RS Component, Future 

electronics, Grainger and many others (octopart, 2014). 

This tool was used for component name verification in which the recognized labels from OCR 

engines (Tesseract, OCRMax) were requested to the Octopart API. The response of the API is a 

list of equal or similar written component names provided from different suppliers. To assign a 

component name from the obtained list to the recognized label, the Levenshtein distance 

between the component names and the requested label is computed. The component name 

with the smallest distance which is less than or equal the distance threshold 

ὨὭίὸὥὲὧὩ ȟ   ȟ   ς is assigned to the component. The requests were made with the 

data transfer tool curl in MATLAB. 

2.6  Life Cycle Inventory ( LCI) analysis  

Life cycle inventory (LCI) is a process of quantifying energy and raw material requirements, 

atmospheric emissions, waterborne emissions, solid wastes and other releases for the entire 

life cycle of a product, process or activity ((SAIC), et al., 2006). An LCI is the basis of a Life cycle 

impact assessment (LCA) to evaluate comparative environmental impacts or potential 

improvements. With respect to reuse and recycling an LCI can assist organizations in comparing 

products or processes and considering environmental factors in material recycling. The 

άDǳƛŘŜƭƛƴŜǎ ŦƻǊ !ǎǎŜǎǎƛƴƎ ǘƘŜ vǳŀƭƛǘȅ ƻŦ [ƛŦŜ /ȅŎƭŜ LƴǾŜƴǘƻǊȅ !ƴŀƭȅǎƛǎέ (Bakst, et al., 1995) 

provides a framework for performing an inventory analysis. Four steps are defined for making a 

life cycle inventory: 

1. Develop a flow diagram of the process being evaluated 

2. Develop a data collection plan 

3. Collect data 

4. Evaluate and report results 

2.6.1 Categorization of WEEE and PCB waste 

Waste electrical and electronic equipment (WEEE) describes discarded electrical or electronic 

devices. The WEEE directive sets targets for collection, recycling and recovery for WEEE and 

http://en.wikipedia.org/wiki/Electronic_waste
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became a European law in 2003 (Directive 2002/96/EC, 2002). The WEEE directive sets a total 

of 10 categories of WEEE: 

1. large household appliances 

2. small household appliances 

3. IT and telecommunications equipment 

4. consumer equipment 

5. lighting equipment 

6. electrical and electronic tools 

7. toys, leisure and sports equipment 

8. medical devices 

9. monitoring and control instruments 

10. automatic dispensers 

In this work the focus is set on the recycling and reuse of electronic components of PCBs. 

Therefore the WEEE categories which contain a high amount of PCBs like IT and 

telecommunication equipment, consumer equipment, medical devices, monitoring and control 

instruments and automatic dispensers are of particular importance. 

In (Scheideanstalt, 2015), PCB waste from WEEE is categorized in the following categories: 

- PCBs class 1 A: old PCBs with golden contacts, high chip density 

- PCBs class 1 B: PCBs from computers, industry equipment, many gildings and precious 

metal rich chips 

- PCBs class 1 C: colored motherboards, graphic cards, sound cards 

- PCBs class 2 A: PCBs from industry equipment without golden contacts, small precious 

metal rich chips 

- PCBs class 2 B: PCBs from industry equipment without golden contacts, without 

precious metal rich chips, contain small heat sinks or transformers 

- PCBs class 3: PCBs with big capacitors, heat sinks or transformers (PCBs from old 

monitors or power supply controllers) 

http://en.wikipedia.org/wiki/Household_appliance
http://en.wikipedia.org/wiki/Lighting
http://en.wikipedia.org/wiki/Electrical
http://en.wikipedia.org/wiki/Toy
http://en.wikipedia.org/wiki/Leisure
http://en.wikipedia.org/wiki/Sports_equipment
http://en.wikipedia.org/wiki/Medical_device
http://en.wikipedia.org/wiki/Measuring_instrument
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/w/index.php?title=Automatic_dispenser&action=edit&redlink=1
http://en.wikipedia.org/wiki/IT
http://en.wikipedia.org/wiki/Telecommunication
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Valuable PCB modules and components can be categorized as gold connectors, mobile phone 

PCBs, CPU ceramic gold caps, CPU ceramic Intel AMD, plastic CPU processors, CPU slot 

processors, RAM devices, chips (chips, ICs, Eproms), hard drives, CD-/DVD-drives, transformers, 

ŎŀōƭŜǎΣ ǊŜƭŀȅǎ ŀƴŘ ǇǊŜŎƛƻǳǎ ƳŜǘŀƭ ǊƛŎƘ ŎƻƳǇƻƴŜƴǘǎ όǉǳŀǊǘȊΣ ǘǊŀƴǎƛǎǘƻǊǎΣ ŎŀǇŀŎƛǘƻǊǎΣ ǊŜǎƛǎǘƻǊǎΣΧύ 

(Scheideanstalt, 2015). The categorization became more detailed in the last years, what is 

associated with the increasing interest in recycling of electronic waste. Several recycling 

companies recycle tantalum capacitors due to the fact that tantalum recycling became more 

profitable in the last years (Tantalumrecycling, 2015). 

2.6.2 Recycling and reuse potential of electronic PCB waste  

The use of electronic equipment has increased worldwide in the past few years. Precious 

metals are an important raw material for EEE manufacturers and the demand is growing fast. 

After use phase the EEE becomes waste (WEEE). The concentration of precious metals in WEEE 

is small, but the economic and ecological value of precious metals like gold, silver or palladium 

and special metals like tantalum or neodymium make recycling economically and ecologically 

relevant. Recycling of raw materials from end-of-life electronics is the most effective solution 

for solving the problem of growing e-waste. Recycling also protects from landfill of hazardous 

materials from PCBs. The highest concentration of precious metals in WEEE is located in the 

PCBs. One measurement showed that one ton of PCB waste contains around 135 g gold, 669 g 

silver and 50 g palladium which can be recycled. As presented in section 1.1, in a pre-processing 

facility only about a quarter of the gold and palladium and a tenth of silver were sent to output 

fractions from which precious metals were directly recovered (Chancerel, et al., 2009). 

Reuse of electronic components can help to prevent health problems, create jobs and reduce 

greenhouse-gas emissions. ¦ƴŦƻǊǘǳƴŀǘŜƭȅ ǘƻŘŀȅΩǎ ƳŀǊƪŜǘ ŦƻǊ ǊŜǳǎŜŘ ŜƭŜŎǘǊƻƴƛŎ ŎƻƳǇƻƴŜƴǘs is 

very small. Testing of unsoldered electronic components is very difficult caused by the height 

diversity and complexity of electronic components. Also low prices of electronic components in 

consumer electronics is challenging for a growing reuse market. A system which determines the 

price of specific electronic components to estimate the revenue is necessary to increase the 

potential of reusing electronic components.  
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2.6.3 International Reference L ife Cycle Data System (ILCD) format  

The International Life Cycle Data System (ILCD) has been developed by the Joint Research 

Centre - Institute for Environment and Sustainability (JRC-IES) of the European Commission to 

provide guidance for consistent and quality assured life cycle assessment data and studies 

(Commission, 2012). The ILCD Data Format was developed for storing and structuring data set 

information within a data stream or file to enhance the availability of consistent and quality 

assured Life Cycle Inventory (LCI) data sets. It was designed to serve as reference format and for 

data exchange between varieties of Life Cycle Impact Assessment (LCA) software. The ILCD data 

format has been released in 2009 and has already seen some adoption among tools like GaBi or 

OpenLCA and databases in the meantime. The ILCD format is based on an Internet-aware, 

linked data approach. The ILCD format provides currently seven data set types which identify 

different semantic concepts in LCA modeling that are linked together via typed links called 

global references (Wolf, et al., 2011). These types of data set concepts are: 

- Process: Modeling unit and aggregated processes and result sets. Input and Output 

flows are modeled by global references to other datasets of type flow. 

- Flow: Describes an elementary, product or waste flow. It references one or more flow 

properties. 

- Flow Property: Describes physical or other properties of a flow that can be used to 

quantify it, for example mass. Each instance references one Unit Group data set. 

- Unit Group: Describes a group of convertible units and the conversion factors to its 

reference unit. 

- LCIA Method: Describes an LCIA method and its characteristic factors. 

- Source: Represents an external source of information, such as literature or a database 

or data format. It can reference a contact it is related to. 

- Contact: describes a person or organization. 

The ILCD format is used in this work to transfer LCI models of PCBs which are automatically 

created in MATLAB. They can be imported in LCA software like GaBi or OpenLCA to analyze 

ecological impacts. 
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3. Methods for e lectronic component  recognition  

The methods for object recognition used in this work are based on the data fusion model 

specified in chapter 2.4. At first, the acquired images are preprocessed through rotation 

correction and scaling determination. After preprocessing, the detection of electronic 

components is studied, which includes the determination of the component bounding boxes in 

the image. A detailed measurement of detection investigation is not performed. This work is 

focusing on component classification based on the previous component detection step. The 

classification step is based on feature extraction and the following feature selection (feature-

fusion-level) of the most important features. The classification of the components is examined 

with the random forest classifier and support vector machines (Linear-SVM and RBF-SVM) 

(classifier-fusion-level). The component class, which can be one of the components in the 

recognition database or an unknown component, is determined on decision-fusion-level. To 

assign a component to a component in the Octopart database, an OCR approach is applied to 

identify the component name. The Octopart database is used to verify the electronic 

component name and receive additional information about its availability and prices. 

3.1 Image preprocessing  

The image preprocessing is the first step after image acquisition. In this work the preprocessing 

consists of two steps, the image rotation correction and the determination of the image scale. 

The object recognition is based on features which are extracted from the images. In many 

object recognition tasks, based on 2D image data, the object can be rotated or appear in 

different scales. Features which are invariant in scaling and rotation have to be found for object 

classification. The advantage of this work is the fact, that invariance against scaling and rotation 

of the object is determined in the preprocessing step. The rotation correction is applied on the 

whole PCB image, which is specified in chapter 3.1.1. The scaling is also applied on the whole 

image at which the dimensions of the electronic component are fixed and the scale of the 

image is determined based on a scaling symbol. The scaling estimation process is specified in 

chapter 3.1.2. 
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3.1.1 Image rotation correction  

To bypass the restriction of rotation invariant features for object recognition, the rotation angle 

of the printed circuit board images were determined. Since there is no fixed printed circuit 

board orientation, the orientation is set by invariants of 90 degree due to the fact that most of 

the electronic components are horizontal or vertical aligned. The whole process is based on the 

assumption that conductor tracks and electronic components are mostly horizontal or vertical 

aligned and their structure and borders producing more horizontal and vertical edges than 

edges with different orientations. The rotation angle estimation is based on the rotation 

property of a discrete Fourier transform. The DFT of an image rotated by an angle ɸ is the DFT 

of the unrotated image, rotated by the same angle ɸ. The rotation property of a DFT is derived 

in (Petrou, et al., 1999) and therefore omitted here. The approach is based on the property that 

lines (edges) in the image are transformed to points in the frequency domain. Horizontal lines 

in the image are transformed to points on the centered vertical line in the frequency domain 

and vertical lines in the image are transformed to points on the horizontal centered line in the 

frequency domain. An example is shown in Figure 5. 

 

Figure 5: Transformation from lines in the image to points in the frequency domain (www.svi.nl/FourierTransform) 

The image rotation correction process is shown in Figure 6.  
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Figure 6: Image rotation correction process 

At first, the image is cropped to a squared image (2000px x 2000px) to reduce process runtime. 

The RGB image is converted to a grayscale image and canny edge detection is applied. 

Afterwards a 2D-DFT (discrete Fourier transformation) is computed from the edge image. To 

estimate the rotation angle, the amplitude of the shifted 2D FFT image is summed up over 

discretized angles and normalized by the number of amplitudes per angle step. The 

discretization is done in steps of 0.25 degrees from 0 to 360 degree which results in a 

discretization error of 0.125 degrees. The maximum of the normalized sum of amplitudes over 

the angle corresponds to the image rotation angle. With this process the rotation angle can be 

estimated with invariants of 90 degree image rotation. An example of an image rotated by 3.0 

degree, the corresponding edge image, amplitude of the DFT image and summed up amplitude 

over the angle is shown in Figure 7, Figure 8, Figure 9 and Figure 10. The precision of angle 

estimation was not investigated in detail but inaccuracies could not be determined by eye. 
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Figure 7: Image rotated by 3.0 degree 

 

Figure 8: Canny edge image of the rotated image 

 

Figure 9: Shifted DFT of the rotated image (logarithmic 
representation) 

 

 

Figure 10: Summed amplitude over angle (invariants by 90 
degree) 

 

3.1.2 Scaling determination based on scaling symbol  

To bypass the restriction of scale invariant features for object recognition, the scaling of the 

printed circuit board images were determined using a scaling symbol.  
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Figure 11: Scale symbol 

 

Figure 12: Scale symbol placed on the board 

 

The scaling symbol is shown in Figure 11 and Figure 12. The whole scaling determination 

process is shown in Figure 13.  

 

Figure 13: Scaling determination process 
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At first the image is converted from the RGB color model to the HSV color model and the 

brightness channel (value channel) is used to make a discrete cosine transform. The discrete 

cosine transform is frequently used in image compression such as the JPEG format. The discrete 

cosine transform is similar to the discrete Fourier transform but uses only cosine functions as 

kernels. The discrete cosine transform is shown in equations (43) and (44) (Gonzalez, et al., 

2006). 
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(45) 

To suppress illumination changes, an ideal low pass filter is applied in the frequency domain in 

which the first 10 x 10 cosine coefficients were discarded. Afterwards the inverse cosine 

transform is applied to get the image in time domain. To extract the two dark circles of the 

scaling sȅƳōƻƭΣ hǘǎǳΩǎ method is used to automatically perform thresholding. To avoid salt and 

pepper noise, a morphological closing operator (5x5) is applied. The image is inverted and the 

eccentricity and bounding boxes are determined from the blobs. All blobs inside the 

eccentricity interval and inside the diameter interval are maintained, others are discarded. 

ὦὰέὦί ὦὰέὦίȟὩὧὧ Ὡὧὧ ᷈ Ὠ Ὠ Ὠ } (46) 

 

Ὡὧὧ πȢχȟὨ ςυ ὴὼ ȟὨ υππ ὴὼ  
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To find the center of the scaling symbol, the distances between the centers of all blobs are 

calculated and the two blobs with the smallest distance are the inner and outer dark rings of 

the scaling symbol. The outer diameter of the larger blob is used as reference for calculating the 

image scale. 

ὭάὥὫὩίὧὥὰὩ
ὨὭὥάὩὸὩὶ ὴὭὼὩὰ

ὨὭὥάὩὸὩὶ άά

ὨὭὥάὩὸὩὶ ὴὭὼὩὰ

χȢχ άά
 

(47) 

 

 

Figure 14: Value channel (brightness) of HSV color image 
 

 

Figure 15: Cosine transform filtered image 

 

Figure 16: Otsu thresholding 

 

Figure 17: Blobs of the scaling symbol 
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3.1.3 Image resolution for feature  extraction  

The resulting features quality of feature extraction algorithms depend on the resolutions of the 

images. In general higher image resolutions improve the feature precision but also increase the 

run time and memory usage. Therefore a trade-off between a high image resolution on one 

hand and memory usage and runtime on the other must be found. In this approach the image 

resolution depends on the size of the component. Smaller components require a higher 

resolution than larger ones because there images contain more details. 

ὥὶὩὥ  άά ύὭὨὸὬ άά ὬzὭὫὬὸ άά (48) 
 

 

 

ὖὖὓὓὥὶὩὥ ὥz ÅØÐ ὦ ὥὶὩὥ  άά ὧ ὴὴάά (49) 
 

 

The algorithm dependent resolution parameters are defined in Table 1. 

Table 1: Feature extraction algorithm based resolution parameter 

 a b c 

Fourier coefficients based 
feature extraction 

5 0.003 15 

Histogram based feature 
extraction 

10 0.003 10 

Segment based feature 
extraction 

19 0.005 1 

PCA reconstruction based 
feature extraction 

18 0.005 2 

The area and algorithm dependent resolution is plotted in Figure 18. 
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Figure 18: Dependence of the resolution from component area and feature extraction algorithm 

 

3.2  Electronic component detection  

A necessary processing step for component classification is component detection. The 

detection includes the determination of component positions without knowing which 

component class the detected component belongs to. Component detection is necessary, 

because component classification is time consuming and a classification of every possible 

component position in the image is impossible. The goal of component detection is to narrow 

the search area. Incorrect positive detections (component detections at positions where no 

component is located) can be corrected by the component classification step. Incorrect 

negative detections (component detections where no component is located) cannot be 

corrected by the component classification step. Several component detection approaches 

where studied. Approaches based on the PCB surface color (chapter 3.2.2) and 2D normalized 

cross correlation (chapter 3.2.3) are specified in this work. Component detection approaches 

based on laser triangulation (chapter 8.2) or PCB 3D models (chapter 0) were already specified 

in several papers. 
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3.2.1 PCB board segmentation  

One of the steps before detecting electronic components is the segmentation of the PCB board 

to reduce the search area for electronic components. In this approach the PCBs are placed on a 

white sheet and images are taken, which results in a bright background. The process flow 

shown in Figure 19 is applied.  

 

Figure 19: PCB board segmentation process flow 

At first the minimum number of background pixel is defined as 5% of the image pixel to not cut 

out white regions from the PCB board.  

ΠὄὥὧὯὫὶέόὲὨὴὭὼὩὰ πȢπυzΠὍάὥὫὩὴὭὼὩὰ (50) 
 

 

  

Afterwards Otsu segmentation is applied, followed by a morphological erode step with a 10x10 

kernel to separate white regions from the PCB board which are connected with the 

background. In the last step all blobs with the number of pixels greater than the minimum 

background pixel number ΠὄὥὧὯὶέόὲὨὴὭὼὩὰ  are cut off whereby all remaining regions are 

mainly PCB regions. An example for the PCB board segmentation is shown in Figure 20, Figure 

21, Figure 22and Figure 23. 
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Figure 20: Acquired PCB image 

 

Figure 21: Otsu segmentation 

 

Figure 22: Morphological eroded image with 10x10 kernel 

 

Figure 23: Segmented PCB board image 

 

3.2.2 Color based PCB surface detection  

To classify an electronic component it is necessary to know its position on the PCB board. One 

possible process step is the segmentation of the PCB surface based on the color and 

distribution of the surface pixels across the PCB image.  

This approach is based on the following assumption of PCB surfaces:  

- Most PCB surfaces have striking colors compared to the color of the electronic 

components or PCB markings. That results in a mostly colored isolating protection 

lacquer. Frequently used colors are green, blue, orange and red.  
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- The number of surface pixel clusters is high compared to other pixel clusters caused by 

mostly large surface areas compared to individual components. 

- In the majority of cases, surface pixels form large connected areas on the PCB surface, 

which results in a small number of segment blobs compared to other clusters. 

- Usually, surface segments form contiguous areas which results in a smaller number of 

edge pixels than for other segment clusters. 

The process flow is shown in Figure 24.  

 

Figure 24: PCB surface segmentation process flow 
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The image is scaled to a lower resolution of υ ὴὴάά to speed up the PCB surface detection 

process. In the second process step a region growing approach is used to divide the image in 

regions with similar colors. The seed points of the region growing algorithm are chosen 

randomly, requiring the seed points to be placed in the non-segmented image region. The 

criterion to stop the growing process of a seed point is a similarity threshold value, represented 

by the Euclidian distance between the normalized color of the neighboring pixel and the 

average normalized color of the region. If the distance exceeds a distance threshold value of 

0.2, the neighboring pixel will not be considered as a region pixel. The growing process of a 

seed point stops if no neighboring pixel is considered to be part of the region. The region 

growing process is specified in chapter 0. After segmenting a region, all non-segmented regions 

with an area smaller than υάά  are removed from the non-segmented region to speed up the 

process. If there non-segmented regions still exist, the region growing process is repeated with 

a new randomly selected seed point in the non-segmented region. Once all image regions are 

segmented or rejected from the non-segmented region the process stops.  

The first 200 segments from the region segmentation process are shown in Figure 26. 

 

Figure 25: Original image 

 

Figure 26: First 200 image segments based on region growing 
approach 

After region growing, the segments are clustered based on their color. A cluster pyramid is 

drawn in which the number of clusters increases by one on each its levels. The k-means 

clustering algorithm is used with a randomly selected initial set of Ὧ means. The Ὧ-means 


































































































































































































































